
Data manipulation and
visualization with R

3.2. Data visualization with ggplot2

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

Introduction

In the last lesson we looked at visualizations with standard R
functions for the purpose of data exploration. Now we want to use
the package “ggplot2” to create better looking and more versatile
graphs for data presentation.

This graph is a good example of how five different layers of
information can be shown at once:

● x coordinates: distribution of “miles per gallon”
● y coordinates: distribution of “weight (1000 lbs)”
● Shape of dots: number of gears
● Color of dots: number of horsepowers
● Size of dots: number of cylinders

ggplot2 supports the integration of several layers of information
with significantly less effort (and code) than standard R functions.

Why ggplot2?

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

Introduction

This course will give an introduction to the package ggplot2. We will
look at the function qplot(), which is akin to the familiar plot()
function used for “quick plots”.

The function ggplot() acts as the base for each graph, but requires
a certain “grammar of graphics” (gg) that combines parameters in a
similar way words are combined to sentences. Geometries (geom_)
are used to create, for example, either a bar plot or a scatter plot
from the same data input.

Eventually, we will look at graphical parameters that add visual
themes, legends or facets to existing ggplot() graphs.

What we will learn

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

Introduction

install.package("ggplot2")

First, we need to install the ggplot2 package. This needs to be done only once.

Next, we add the package to the library. This must be done each session.

ggplot2 is also part of the package “tidyverse”, which includes “dplyr” as well. Installing the tidyverse package therefore installs
ggplot2 automatically.

A comprehensive documentation of ggplot can be found here: https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf.

Furthermore, the “cheat sheet” provides an excellent overview about the most important functions included within this package:
https://rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf

library("ggplot2")

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

Installation guide and online resources

https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
https://rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf

Quick plots

While the ggplot() function used in this package brings its own “grammar of graphics”, the qplot()
(short for “quick plot”) is similar to the plot() function we know from standard functions.

qplot() also uses x and y as parameters to create a two-dimensional graph. In this example we specify
the dataset as “trees” (a dataset that comes with the package), so the function can find the desired
columns without further specification (see first plot):

The parameters “xlab”, “ylab” and “main” also apply to qplot(). However, qplot() also possesses the
parameters “size” and “color” to have a third (or fourth) variable come into play. Notice that the qplot()
creates a raster background as well as a legend. Even done quickly, the plots are more advanced than
the standard plots.

qplot(x=Girth, y=Height, data=trees)

qplot(x=Girth, y=Height, data=trees, size=Volume,
 xlab="Girth of Tree", ylab = "Height of Tree", main = "Tree Height and Girth")

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

qplot()

Quick plots

qplot(x=Girth, y=Height, color=Volume, data=trees, size=2,
 xlab="Girth of Tree", ylab = "Height of Tree", main = "Tree Height and Girth")

qplot(x=Girth, y=Height, data=trees, size=2, shape=as.factor(Volume),
 xlab="Girth of Tree", ylab = "Height of Tree", main = "Tree Height and Girth")

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

qplot()

The “color” parameter adds yet another layer of information.

The "shape" parameter can change the shape of the dot (similar to “pch” in plot()). As there is only a
limited number of shapes (6), a finite number of entries is needed. For this reason, it is recommended to
convert the entry to a factor ("as.factor(x)"). Additionally, choosing a categorical variable with a max of 6
options is recommended, otherwise, a result like the one on the right can be expected.

“Grammar of Graphics”

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot()

The package uses a certain “Grammar of Graphics”. A “sentence”
usually includes:

ggplot() + geom() + additional components (themes, facets, labels, …)

First, we look at ggplot(), which is the main function to build graphics
with ggplot2. We need to specify the dataset and the aesthetics
(“aes”). Aesthetics are the variables that will be visualized. In this case,
we have “Girth” on the x-axis and “Height” on the y-axis. But we will
only see an empty plot, as the type of plot is not yet specified by the
geom().

ggplot(data=trees, aes(x=Girth, y=Height))

“Grammar of Graphics”

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot() + geom()

The geoms() finally add a type of visualization to the plot. They will be
discussed in greater detail in the next chapter. Here are only a few
examples using the same aesthetics.

geom_point() is the equivalent to a scatter plot created by plot(). It
shows all data points. The plot could be enhanced by adding labels
and a title. As the points are not very dense, it might also be useful to
increase their “size” a bit. The geom_smooth() creates a tendency line,
where the gray shaded area indicates uncertainty. The geom_rug()
only pins the x and y values to their respective axes. This can be useful
in addition to a scatter plot or any other plot where individual data
points become difficult to make out.

ggplot(data=trees, aes(x=Girth, y=Height)) + geom_point()
ggplot(data=trees, aes(x=Girth, y=Height)) + geom_smooth()
ggplot(data=trees, aes(x=Girth, y=Height)) + geom_rug()

“Grammar of Graphics”

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot() + geom() + geom() + ...

The geom()s can be combined to overlay different layers of
information. Here, all three previous plots are combined.

In the code below, we save the ggplot() as variable “p”. This makes it
easier to combine plots, e.g. p+geom_point() or to reuse an essential
ggplot(). By calling “p” in the end, the plot is displayed.

Each geom() can have its own aesthetics. Here, we increased the size
of the points in geom_point(). If applied directly to ggplot(), the size
would have affected all geoms(), creating bold lines and pins, too.

p <- ggplot(data=trees, aes(x=Girth, y=Height))
p <- p + geom_point(aes(size=5))
p <- p + geom_smooth()
p <- p + geom_rug()
p

“Grammar of Graphics”

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot() + geom() + theme() + facets().

Finally, we add a theme() and facets().

The theme changes the overall appearance of the plot. In this case we
applied a “dark” theme. This is not always the best choice as it might
distract from the actual information. The user can also create new
themes.

Facets permit comparisons for specified variables. In this case, we
created a column with tree species and separated the data by species.

More details on themes and facets will be given later.

trees$Species <- sample(c("Birch", "Oak", "Pine"), 31, T)
ggplot(data=trees, aes(x=Girth, y=Height)) +
geom_point(aes(size=5)) + geom_smooth() + geom_rug() +
theme_dark() + facet_grid(. ~Species)

geom()

In this chapter, we will look at the most useful geoms and give a
few examples of how to use them effectively.

Overview

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

geom_smooth() x/y scatter plots with tendency lines

geom_line() x/y scatter plots with connected data points

geom_bin2d() x/y heat maps

geom_contour() x/y/z heat maps

geom_histogram() x frequency charts

geom_area() x/y frequency charts

geom_density() x frequency charts

geom_bar() x, x/y bar plots

geom_boxplot() x, x/y box plots

geom_violin() x, x/y box plots

geom_point() x/y scatter plots

geom_jitter() x/y scatter plots

geom_count() x/y scatter plots

geom()

geom_point() is the most common way to show the relationship between two variables
(correlation). The data type is generally continuous, though categorical variables can also be
explored. However, geom_jitter(), geom_count() or geom_bin2d() are usually more appropriate for
categorical variables. For data with three variables, such as the Height, Girth and Volume of our
“trees” dataset, a bubble chart can be used to show the third variable mapped to the size of points,
as shown in the second example. Additional layers can be added by “color” or “shape”.

Plot Type Data Type Dimensions Purpose

Scatter plot Continuous X,
Continuous Y

2 Showing correlation between 2
variables

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(data=trees, aes(x=Volume, y=Height)) + geom_point()

ggplot(data=trees, aes(x=Volume, y=Height, size=Girth)) + geom_point()

geom_point()

geom()

geom_jitter() is a variant of geom_point() that spreads the data points over a small distance. This
is especially useful when many data points overlap, e.g. because there is little variance in the data.
The parameters “width” and “height” within the geom_jitter() call adjust how much the points
spread from their original position. However, this should be avoided when the accuracy of the data
is imperative (e.g. physical measurements on an atomic level). In those cases, geom_count() might
be more appropriate.

Plot Type Data Type Dimensions Purpose

Scatter plot Continuous X,
Continuous Y

2 Allows you to see multiple
overplotted data points

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(data=trees, aes(x=Girth, y=Height)) + geom_jitter()

ggplot(data=trees, aes(x=Girth, y=Height)) + geom_jitter(width = .5, height = .5)

geom_jitter()

geom()

geom_count() is a variant of geom_point() that counts the number of observations at each point
and maps it to that point. It is useful when we have discrete data and overplotting. In this example,
we have scatter plot where it is unclear whether points overlap. The geom_count() plot, however,
shows that many data points are more frequent than others.

Plot Type Data Type Dimensions Purpose

Scatter plot Continuous 2 Increases circle size when points
overlap

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(data=mpg, aes(x=cty, y=hwy)) + geom_point()

ggplot(data=mpg, aes(x=cty, y=hwy)) + geom_count()

geom_count()

geom()

geom_smooth() shows a tendency line for an x/y plot. The blue line shows where predicted values
would be located, while the gray shaded area indicates uncertainty. The less known data, the higher
the uncertainty. Look up the geom() in the documentary for further details about the mathematics
behind linear models and applicable parameters, as this exceeds this course’s scope.

The tendency lines are often combined with scatter plots using geom_point() or geom_count().

Plot Type Data Type Dimensions Purpose

Line Chart Continuous Function 2 Showing trends over time

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(data=trees, aes(x=Volume, y=Height)) + geom_smooth()

ggplot(data=trees, aes(x=Volume, y=Height)) + geom_smooth() + geom_point()

geom_smooth()

geom()

geom_line() is mostly used for time series (line charts) to map change over time. It creates a line
connecting all data points in the order they appear in the dataset. The optional parameter “linetype”
can be changed to e.g. “dashed” or “dotted”. The “size” parameter changes the thickness of the
lines, however, this should be used sparingly. It is recommended to change the “size” parameter
directly in the geom_line() and not as an aesthetic, so it only affects the projection of lines and no
other geometries are introduced to the plot.

Plot Type Data Type Dimensions Purpose

Line Chart Continuous Function 2 Showing trends over time

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_line()

ggplot(data=mtcars, aes(x=wt, y=mpg)) + geom_line(linetype="dashed", size=2)

geom_line()

geom()

geom_bin2d() is a variant of geom_point() that counts the number of observations at each point
and maps it to that point. It is useful when we have discrete data and overplotting. While
geom_count() changes the dot size, geom_bin2d() indicates higher frequencies with color. You can
create a plot where the brighter colors show points that stick out further. The parameter “bins”
specifies how many bins per x or y dimension are created. Higher numbers lead to a higher
resolution. Bins can be setup with vectors as well: “bin=c(5,50)” creates 5 bins horizontally and 50
vertically.

Plot Type Data Type Dimensions Purpose

2d Histogram and
Heatmaps

Continuous bivariate
distribution

2 Adding a heatmap of 2d bin counts

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(diamonds, aes(carat, price)) + geom_bin2d()

ggplot(diamonds, aes(carat, price)) + geom_bin2d(bins=50)

geom_bin2d()

geom()

We can use geom_contour() to visualize 3d surfaces in 2d. For this visualization, the data must
contain only a single row for each unique combination of the variables mapped to the x and y
aesthetics. x and y will be shown on a plane from above, while the z variable adds a relief which is
shown by lines. You may know this visualization from weather (temperature) or topography (height)
maps. “bins” determines how many lines will be shown. A geom_raster() using the z variable as a
“fill” can be added to visualize an underlying heatmap.

Plot Type Data Type Dimensions Purpose

Contour Plot 3 2d contours of a 3d surface

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(data=faithfuld, aes(x=waiting, y=eruptions, z=density)) + geom_contour()
ggplot(faithfuld, aes(x=waiting, y=eruptions, z=density)) + geom_contour(bins=20)
ggplot(faithfuld, aes(x=waiting, y=eruptions, z=density)) + geom_contour(bins=20) + geom_raster(aes(fill=density))

geom_contour()

geom()

geom_histogram() is useful to display the distribution of a data set with a single variable (univariate).
A range is divided into a series of intervals, where the “binwidth” parameter indicates how many
neighboring x values are grouped into one bin. For example, the second plot includes two x values
into every bin, leading to fewer bins in total. The “fill” aesthetic applied to the geom() creates stacked
bins, thus showing frequencies of different categories within the dataset.

Plot Type Data Type Dimensions Purpose

Histogram Categorical,
continuous

1 Displays categorical differences

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(data=trees, aes(x=Girth)) + geom_histogram(binwidth=1)

ggplot(data=trees, aes(x=Girth,)) + geom_histogram(aes(fill=Species), binwidth=2)

geom_histogram()

geom()

geom_area() is typically used to compare how a certain metric performed against a baseline, i.e.
stocks, unemployment, etc. The ymin is set to 0. Unlike a histogram that shows the frequency of one
x variable, the geom_area() uses an actual y variable for the vertical distribution.

The second example adds two geom_area() to the base ggplot(). Note that one of them uses a
different y variable introduced as an aesthetic to only the geom(). alpha=.3 sets 30% transparency.

Plot Type Data Type Dimensions Purpose

Area Plot Continuous 1; 2 Connecting observations ordered by
“x”

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(economics, aes(x=date, y=unemploy)) + geom_area()

ggplot(economics, aes(x=date, y=pce)) + geom_area(aes(y=unemploy, alpha=.3)) +
geom_area(fill="blue", alpha=.3)

geom_area()

geom()

geom_density() is similar to a histogram, but is a smoothed version. This is useful for continuous
data with an underlying smooth distribution. The plot can contain only outlines or a solidly filled
version. In the latter one, however, areas in the foreground might overlap and hide other areas in the
background. The “position” parameter in the geom_density() call can be used to stack all areas
vertically to have a better comparison of each x value and a clearer image of the overall distribution.

Plot Type Data Type Dimensions Purpose

Smoothed Histogram Continuous 1 Distribution and density estimates

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(diamonds, aes(carat, colour = cut)) + geom_density()
ggplot(diamonds, aes(carat, colour = cut, fill = cut)) + geom_density()
ggplot(diamonds, aes(carat, fill = cut)) + geom_density(position = "stack")

geom_density()

geom()

geom_bar() creates a bar chart with one variable (x), and the y axis is the frequency of x. These plots
are more suitable than histograms when the x variable is categorical, e.g. genders, types or, in this
case, diamond cuts. By default, only the frequency of the x variable’s categories are presented. If the
aesthetic “fill” is given a variable, the bars will be separated into respective shares of the second
variable. (The aesthetic “color” only colors the outlines, which, in most cases, is difficult to see.) The
“position” parameter can be set to “filled” to give each bar the same height. Now, percentages can be
read on the y axis.

Plot Type Data Type Dimensions Purpose

Bar Chart Categorical 1;2 Deviation, ranking or composition

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(diamonds, aes(cut)) + geom_bar()
ggplot(diamonds, aes(cut, fill = color)) + geom_bar()
ggplot(diamonds, aes(cut, fill = color)) + geom_bar(position="fill")

geom_bar()

geom()

geom_boxplot() can be useful to show the distribution, median, range and outliers of a categorical
variable. The top of the box is the 75th percentile, and the bottom is 25th percentile, with the dark line
being the median. A secondary variable y can be introduced to have the data split. The example
above shows the frequencies of hair colors, while the example below also makes a gender split. Long
“whiskers” above and below boxes (each indicating 25% of the data) show long tails in the
distribution. Outliers are shown with dots.

Plot Type Data Type Dimensions Purpose

Box and Whiskers Plot Categorical X,
Continuous Y

2 Distribution and density estimates,
with outliers

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

df <- as.data.frame(HairEyeColor) #input must be a data.frame

ggplot(df, aes(x=Hair, y=Freq)) + geom_boxplot()
ggplot(df, aes(x=Hair, y=Freq, fill=Sex)) + geom_boxplot()

geom_boxplot()

geom()

geom_violin() is similar to a box plot but with a density distribution. Instead of boxes containing 25%
of the data, the graph shows vertically aligned density plots, where “thicker” parts of the shape
represent more data in these areas. Short boxes equal thick shapes, stretched boxes equal thin
shapes. Often this leads to a violin shape giving the plot its name. Violin plots may be easier to
interpret than boxplots for laymen.

Plot Type Data Type Dimensions Purpose

Violin Plot Categorical X,
Continuous Y

2 Compact display of a continuous
distribution

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

df <- as.data.frame(HairEyeColor) #input must be a data.frame

ggplot(df, aes(x=Hair, y=Freq, fill=Sex)) + geom_boxplot()
ggplot(df, aes(x=Hair, y=Freq, fill=Sex)) + geom_violin()

geom_violin()

Graphical Parameters

In this chapter we will look at graphical parameters that change the
overall appearance of the plot.

We will discuss the following parameters:
● Facets
● Coordinate Systems
● Labels
● Legends
● Themes

Graphical parameters

Facets are a key feature of ggplot2. They disentangle data by separating categories of
data into individual plots with comparable axes and scales. The example shows a graph
where individual data points are difficult to identify because of their quantity and the fact
that some points overlap other points. The facet_grid() we apply in the second plot
separates all data points by the chosen attribute “color”, splitting the previous plot into
seven individual ones.

The next slides will explain how to use facet_wrap() or facet_grid().

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(diamonds, aes(carat, price, color= color)) + geom_point()

ggplot(diamonds, aes(carat, price, color= color)) + geom_point() + facet_grid(.~color)

Facets

Graphical parameters

facet_wrap() creates an array of facet views. The vars() function is needed to subset
the data into individual datasets. All views will have the same coordinate system to
make them comparable.

The parameters “ncol” and “nrow” can be used to specify how many rows and columns
the array will have. By default, three columns will be created filled from left to right and
top to bottom.

The variable passed to facet_wrap should be categorical with only a few different
categories. A continuous variable with 100 different values would create 100 individual
views, all too small to properly inspect. (This might also crash the program.)

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(diamonds, aes(carat, price, color= color)) + geom_point() +
facet_wrap(vars(color))

facets_wrap()

Graphical parameters

facet_grid() creates an array of facet views. While the facet_wrap() fills an array in a
systematic order, the facet_grid() creates a cross table structure.

The facet_grid(y~x) creates a cross table which as many rows as y has categories, and
as many columns as x has categories. Here again, the variable should be categorical
and, ideally, only have 3-7 categories each. 7 categories in both x and y would create a
matrix with 49 individual views. All would be rather small and might require a long time
to render.

facet_grid(y~.) creates only one column and facet_grid(.~x) creates only one row.
Examples are shown on the next slide.

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

ggplot(diamonds, aes(carat, price, color= color)) + geom_point() +
facet_grid(cut~color)

facets_grid()

Graphical parameters

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

facets_grid()

... + facet_grid(color~.) ... + facet_grid(.~color)

Graphical parameters

Coordinate systems change the projection of data.
coord_cartesian() is the standard projection of plot() and
ggplot(). coord_fixed() creates a plot where the axis are
scaled in a similar ratio. In this example x has a range of
25, while y has a range of 5, leading to a 1:5 ratio.
coord_flipped() exchanges the x and y variables. This can
be used to have bar plots vertically aligned. The
coord_polar() aligns the x axis in a ring. This can also be
applied to have star-shaped bar plots. However, polar
coordinate systems are less accessible to readers.

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point(size=3)
p + coord_cartesian() # top left
p + coord_fixed() # top right
p + coord_flip() # bottom left
p + coord_polar() # bottom right

Coordinate systems

Graphical parameters

The labs() function adds labels (axes, titles, captions) to the plot.

This is similar to “main” and “x/ylab” in the plot() function, however, the parameters are
named slightly different. “title” adds a title, while “x” and “y” add their respective axis
labels. The input given to the “caption” parameter appears in the bottom right corner of
the plot. This can be used to add a source or a note to the plot.

As with plot(), the user has to decide whether the title and caption should be hard-coded
to the plot or whether they will be added in e.g. Microsoft Word as figure caption. Labels
for x and y axes should always be given with a precise description of the variables and
their units.

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

p <- ggplot(mtcars, aes(mpg, wt, col=cyl)) + geom_point(size=3)
p + labs(title="Cars: miles per gallon, weight and cylinders of selected cars",
 x="Miles per gallon (mpg)", y="Weight (1000 lbs)", caption="Source: mtcars")

Labels

Graphical parameters

ggplot() creates legends automatically for variables added by the parameters “shape”, “color”,
“fill” or “size”.

The user has several options to delete the legend or adjust how it is presented. In this example
the legend was removed. This is usually not recommended as the plot itself will not be
inherently understandable. It might be useful to remove the legend if the plot will be presented
amidst other plots where at least one uses the same legend.

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

p <- ggplot(mtcars, aes(mpg, wt, color=cyl, shape=as.factor(gear))) + geom_point(size=3)
p

p + theme(legend.position = "none")

Legends

Graphical parameters

The legends can be adjusted to show different titles or scales. In the example above, there are
a few aspects of the legends that could be improved: (1) “cyl” and “as.factor(gear)” are bad
titles, (2) the cylinder scale includes the values “7” and “5” although no car with these
properties are in the dataset.

By using scale_PARAMETER_TYPE, we can adjust the legend for the specified parameter. For
example, if we have a continuous “fill” parameter, the function “scale_fill_continuous” would be
used. The type is usually either “continuous” or “discrete”. The parameter “name” changes the
title. A vector passed to “breaks” limits the scale of the legend (here: only including 8, 6 and 4).
Similarly, the parameter “labels” adjusts which labels are shown.

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

p <- ggplot(mtcars, aes(mpg, wt, color=cyl, shape=as.factor(gear))) + geom_point(size=3)
p + scale_color_continuous(name="Cylinders", breaks =c(8,6,4)) +
 scale_shape_discrete(name="Gears")

Legends

Graphical parameters

Themes change the overall appearance of a plot. They can be
used to define a consistent presentation of several plots. By
default, each plot is given a light gray background raster. The
theme_bw() reduces this to a black/white raster. This saves ink
when printing and might make the plot clearer. A theme_dark()
creates a dark gray background. This should be avoided for
prints. The theme_classic() only creates axes but no background
raster. ?theme gives an overview about further adjustments.

3.2 Data Visualization with ggplot2 | Hannes Seller, Jonathan Young (2020)

p <- ggplot(mtcars, aes(mpg, wt, color=cyl)) + geom_point()

p # top left
p + theme_bw() # top right
p + theme_dark() # bottom left
p + theme_classic() # bottom right

Themes

