
Data manipulation and
visualization with R

3.1 Basic visualization functions

Hannes Seller, Jonathan Young (2020)

Introduction

The language R provides many functions to visualize data
in different ways: scatter plots, histograms, bar plots or pie
charts to name only a few.

In this course we will look at the most common
visualization techniques that are provided by R (without
the use of additional packages, which will be subject to the
next course):

● Visual data exploration
● Scatter plots (x/y plots)
● Histograms
● Bar plots
● Pie charts
● Combining plots
● Exporting plots to files

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Visual data exploration

An important initial step in data analysis is visual data
exploration. An image says more than a thousand words,
and a plot of data points more than any table could. Visual
exploration is often considered “quick and dirty”, as plots
do not have to be aesthetically pleasing to convey first
impressions of the dataset.

From an x/y plot, tendencies and outliers in the data might
be observable. A histogram provides a quick glance at the
data’s distribution. Visualizations with standard R
functions are ideal for quick explorations, however, they
might not deliver the most presentable graphics. In this
course, we will focus on standard functions for the
purpose of exploration, hence, we do not care too much
about their looks. The upcoming course, in contrast, will
focus on “nicer” visualizations using the package ggplot2.

Let’s have a quick look!

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Scatter plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

plot()

Scatter plots (also known as x/y plots) visualize one variable on
the horizontal x-axis and one variable on the vertical y-axis. These
plots are ideal to show the relation between two variables (e.g. a
car’s weight and its horsepower) or mathematical functions. They
are created by the plot() function. The function has following
essential parameters:

● x, y # input for x and y variables
● col, pch # color and shape of dots
● xlab, ylab # labels for x and y axes
● main # plot title
● type # type of visualization
● lty, lwd # type and width of lines
● xlim, ylim # cropping x and y axes

We will now go through an example and gradually build a plot.

Scatter plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

plot(x, y)

The input for the x and y variables has to fulfill two conditions:

● The two variables must be formatted as vectors
● The Variables must be the same length

The following code gives the most basic visualization of two
variables (non-solid dots and axes labels based on vector names)
of the dataset mtcars which contains the data of 32 cars. (This
dataset is always available within RStudio.) The variables can be
assigned to the parameters x and y. If not specified, R will interpret
the first entry as x and the second as y.

plot(x=mtcars$hp, y=mtcars$wt) # specifying x and y
plot(mtcars$hp, mtcars$wt) # implied x and y variables

Scatter plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

plot(x, y, col)

The col parameter determines the color of dots. There are different
ways to specify the color:

● Color names like “red”, “blue” or “green” are easy and intuitive.
They are humanly readable which makes the code easy to
maintain. A full list of usable colors is given here:
(http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf)

● Colors based on hexadecimal numbers representing the
share of Red/Green/Blue (https://www.color-hex.com/)

● There are also functions that create colors palettes like the
rainbow(n) function creating a vector with n different colors.

plot(x=mtcars$hp, y=mtcars$wt, col="red") # color names
plot(x=mtcars$hp, y=mtcars$wt, col="#FF0000") # HEX codes
plot(x=mtcars$hp, y=mtcars$wt, col=rainbow(1)) # functions

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
https://www.color-hex.com/

Scatterplots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

plot(x, y, col, pch)

The pch parameter stands for “plot character” and determines the
visual representation of each data point. By default the plot uses
non-solid dots (i.e. colored outlines of empty circles).

All options can be displayed in RStudio calling ?pch in the console. A
0 creates non-solid squares, while a 15 creates solid squares filled by
the chosen color.

It is highly recommended to use only a few basic options here, e.g.
circles, triangles and squares to keep the plot simple.

solid (i.e. colored) circles
plot(x=mtcars$hp, y=mtcars$wt, col="red", pch=16)

Scatterplots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

plot(x, y, col, xlab, ylab, main)

The parameters xlab and ylab use strings (vectors containing text) to
add labels to the x and y axes while main adds a title to the plot.

The following example creates the plot previously shown as an
example. Please note that the code of the plot() function is here
written over several lines. Adding line breaks after parameters can be
useful to make the code easier to read and maintain. Thus, even
annotations can be added into the function’s call.

plot(mtcars$hp, mtcars$wt, # horsepower against weight
 col="red", pch=16, #red filled circles
 xlab="Horsepower", ylab="Weight",
 main="Relation between cars' weight and HP"
)

Scatter plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

plot(x, y, type)

The type parameter can be used to switch from separated dots to
connected lines. However, this might not be meaningful for all types
of data (like the cars that are individual observations). Line-typed
scatter plots can be used to display mathematical functions though.

The example shows four different plot types. Type “p” is the default
and will be used if no type is specified.

x <- c(-10:10) # x variable: all integers from -10 to 10
y <- x^2 # y variable: x squared
plot(x, y, pch=16, type="p", main='type="p" (point)')
plot(x, y, pch=16, type="l", main='type="l" (line)') # note: minor L
plot(x, y, pch=16, type="b", main='type="b" (both)')
plot(x, y, pch=16, type="n", main='type="n" (nothing')

Scatter plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

plot(x, y, lty, lwd)

The lines can further be adjusted using the parameters lty (line type)
and lwd (line width). Please note the difference between setting the
type to visualization to a line (type="l") and changing the type of the
line (lty=...). The line types (lty) are indicated by integers with 1 being
the default continuous line and 2 being a dashed line. (All higher
integers give variations of a dashed lines.) The width is 1 by default
and cannot be lower than that. A width of 2 or 3 is usually more than
enough to emphasize a certain plot.

x <- c(-10:10) # x variable: all integers from -10 to 10
y <- 2*x+1 # function y = 2*x+1
plot(x,y, type="l", col="red", lty=1, lwd=1)
plot(x,y, type="l", col="blue", lty=2, lwd=1)
plot(x,y, type="l", col="red", lty=1, lwd=3)
plot(x,y, type="l", col="blue", lty=2, lwd=5)

Scatter plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

plot(x, y, xlim, ylim)

The parameters xlim and ylim determine how much of each axis is
shown. By default, the plot is sized to include all data points x/y.
xlim and ylim require vectors that specify the interval, e.g.
xlim=c(-5,5) reaches from x=-5 to x=5 . Thus, the user can limit
which data points will be included in the graph or zoom into a
specific area of a mathematical function.

Be aware of cropped or stretched axes as they can be used to
manipulate how a reader interprets the plot. For example, the
second plot suggests a smaller slope of the function.

plot(x,y, pch=16, type="l", main='y=x²')
plot(x,y, pch=16, type="l", xlim=c(-5,5))
plot(x,y, pch=16, type="l", ylim=c(0,400))
plot(x,y, pch=16, type="l", ,xlim=c(0,5), ylim=c(0,20))

Histograms

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

hist(x)

Histograms are usually used to show distributions of datasets and
frequencies of specific values or value intervals.

In this example we simulate the height of an adult population and
visualize them with hist():

creating 10,000 normally distributed values with …
… a mean of 177 and a standard deviation of 5:
x <- rnorm(10000, 177, 5)

hist(x, col="lightgray", xlab="Height (cm)")
hist(x, breaks=50, col="lightgray", xlab="Height (cm)")
hist(x, breaks=100, col="lightgray", xlab="Height (cm)")
hist(x, breaks=200, col="lightgray", xlab="Height (cm)")

Histograms

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

h <- hist(x)

The hist() creates a histogram object that can be assigned to a
variable. Thus, statistics about the distribution become available.

In this example, the first bin includes all numbers (4 cases) from
160 to 165. The individual counts divided by their sum give the
percentage of each bin, e.g. 4% for the first bin.

creating numbers with seed 42 (to get the same random
numbers every time)
set.seed(42); x <- rnorm(n=100, m=177, sd=5)

h <- hist(x)
h$breaks # output: 160 165 170 175 180 185 190
h$counts # output: 4 4 23 36 30 3
h$counts/sum(h$counts) # output: 0.04 0.04 0.23 0.36 0.30 0.03

Bar plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

barplot(table(x), xlab, ylab, main, col)

Bar plots and histograms look rather similar -- both show frequencies and
distributions of data -- but are used for different types of data. (The differences
will be discussed on the next slide.) The barplot() creates a bar for each unique
data category (e.g. biological sex, school grades, etc.) within a data vector and
shows how often it appears in the dataset. The table() function calculates the
frequencies of all data categories of a vector (e.g. male: 23, female: 25) and can
be used as input for the barplot(). The plot() parameters like “xlab”, “ylab”,
“main” and “col” can also be used for bar plots. While the parameters “xlim” and
“ylim” are applicable, they usually mess up the graph and should be avoided.

the sum of two six-sided dice, 10,000 simulations
dice <- sample(1:6,10000, T) + sample(1:6,10000, T)

barplot of frequencies of unique values in dataset “dice”
barplot(table(dice))

Bar plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Bar plot() or hist()?

Bar plots and histograms look rather similar -- both show frequencies and
distributions of data -- but are used for different types of data.

Bar plots are better used when the data is categorical, i.e. there is a finite
set of possible values (e.g. biological sexes, defined income groups,
school grades). In the left column, barplot() is better as the categories are
clearly distinguishable. The histogram, for examples, puts values for “2”
and “3” in one bin, as there are only 10 bins for 11 categories.

Histograms are better used for discrete or continuous data that might
have an infinite amount of different possible values (e.g. measurements
like height in cm). In the right column, the barplot() is a bad choice as
each value (160.01, 160.02, …) is given its own bar. While the histogram
shows less detail for each unique value, the overall frequency is clearer.

(Code on next slide.)

 categorical discrete

hi
st

()

 b

ar
pl

ot
()

Bar plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Bar plot() or hist()?

 categorical discrete

hi
st

()

 b

ar
pl

ot
()

create random data
dice <- sample(1:6,1000, T) + sample(1:6,1000, T)
height <- round(rnorm(1000, 177, 5),2)

top left:
barplot(table(dice), xlab="Sum of eyes", col="red")

#top right:
barplot(table(height),xlab="Height (cm)", col="blue")

bottom left:
hist(dice, xlab="Sum of eyes", col="red")

#bottom right:
hist(height, breaks=40, col="blue", xlab="Height (cm)")

Pie charts

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

pie(table(x), label, main)

Pie charts show the frequency of unique elements in a dataset (like bar plots)
as shares of a circle area.

They also use the table() of a data vector as primary input. The parameter
“label” does not refer to axes but to the annotations put next to each slice of pie.
We can use the names() of the data table(), as shown below, or manually
specify a vector of names (e.g. c(“one eye”, “two eyes”, “three eyes”)).

the sum of two six-sided dice, 10,000 simulations
dice <- sample(1:6,10000, T) + sample(1:6,10000, T)

barplot of frequencies of unique values in dataset “dice”
pie(x=table(dice), label=names(table(dice)),
 main="Probability of eyes (2 six-sided dice)")

Pie charts

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

“The Golden Rule of Pie Charts”

The “Golden Rule of Pie Charts” states: “Do not use pie charts.”

While immensely popular (especially since the advent of Microsoft Excel), pie
charts are often times not the most effective way to present information. The
bar plot and the pie chart on the side display the same data. The bar plot
enables a direct comparison between categories, e.g. “8” is more likely than “6”.
The slices of a pie chart make a direct comparison more difficult -- try to order
the slices by size!

In most cases plots with horizontally aligned bars or all categories stacked onto
one bar are a better choice. Pie charts are only viable if only two or three
categories are shown at once (e.g. YES/NO). Please note that some people
have impaired vision and may struggle with a graph that relies on colors to
distinguish categories, which is usually the case for pie charts.

Combining plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Multiple graphs in one plot

In case we want to include multiple graphs in the same plot, we
cannot simply call two plot() functions after each other as the
second one will create an independent instance of a plot.

x <- c(-10:10) #x: all integers from -10 to 10
y1 <- 2*x+1 #function 1: x=2x+1
y2 <- 3*x -2 #function 2: x=3x-2

plot first function:
plot(x,y1, type="l", col="red", main="y1=2*x+1")

plot second function … in a new plot
plot(x,y2, type="l", col="blue", main="y2=3*x-2")

Combining plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Multiple graphs in one plot

In this example we added two more graphs by using lines() and
points(). When these functions are called, they will add to the last
call of plot(). They cannot work on their own.

The additional graphs are not fully shown as the axes intervals
only depend on plot(). We fix this in the next step!

plot first function:
plot(x,y1, type="l", col="red")

add second function with blue lines (type=”l”):
lines(x,y2, col="blue")

add second function with green points (type=”p”):
points(x,y2, col="green")

Combining plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Multiple graphs in one plot

The range(x) function returns a vector showing the smallest and
biggest number that a vector x contains. In this case the two
functions have different intervals on the y-axis due to the different
slopes. We can use range() to adjust xlim and ylim dynamically.
Now all data points are shown in the plot!

range(y1) #-19 21 range of y1
range(y2) #-32 28 range of y2
range(c(y1,y2)) #-32 28 range of y1 and y2 combined

adjust the ylim using range
plot(x,y1, type="l", col="red", ylim=range(c(y1,y2)))
lines(x,y2, col="blue")
points(x,y2, col="green")

Combining plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Adding axes to plots (abline())

Does this function’s (y=2x²-10) y value go below 0? Certainly, for
the y value for x=0 must be -10. But it is difficult to see in the plot.
Sometimes it can be handy to add horizontal or vertical lines to a
plot to show where the axes would be.

The function abline() can be used to add linear functions (y=a+bx)
to a plot without calculating the numbers or adjusting intervals.
The parameter “a” indicates the intercept (the y value we get when
x=0), while “b” indicates the slope (b=2, for each unit in the positive
x direction, we move 2 units in the positive y direction).

abline(a=0, b=1) # y=0+1x
abline(a=1, b=2) # y=1+2x

Combining plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Adding axes to plots (abline())

The following plot is enhanced using several abline() functions.

x <- c(-10:10) # x: all integers from -10 to 10
y <- 2*x^2 - 10 # y: function y=2x²-10

create an empty plot (type="n")
thus, the axes are drawn first and not on top of the graph
plot(x,y, pch=16, type="n", main='y=2*x²-10')

add axes as ablines:
abline(h=0, col="lightgray") # [h]orizontal line: y=0 (x axis)
abline(v=0, col="lightgray") # [v]ertical line: x=0 (y axis)
lines(x,y) # y=2x²-10, drawn after the axes to be on top
abline(a=0, b=4, col="red") # first derivative of y: y’=0+4x

Combining plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Multiple plots in a shared frame

Not all graphs can (or should) be combined into a single plot. The
command “par(mfrow=c(m, n))” creates a raster with m rows and
n columns in which the next m times n plots are inserted. First we
specify the number of [R]ows m and then the number of [C]olumns
n (mnemonic aid: [R]e[C]tangle). It is recommended to reset the
frame back to 1 by 1 using “par(mfrow=c(1,1))” after all desired
plots are printed so the next set of plots will be displayed
individually again.

par(mfrow=c(2,2)) # open frame: 2 rows, 2 columns
barplot(table(sample(1:6,50, T)), main="Plot 1")
barplot(table(sample(1:6,50, T)), main="Plot 2")
barplot(table(sample(1:6,50, T)), main="Plot 3")
barplot(table(sample(1:6,50, T)), main="Plot 4")
par(mfrow=c(1,1)) # reset frame back to individual display

Exporting plots to files

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Manual export

R and RStudio offer several ways to export plots to files.

After a plot is created, the “Export” button shown on the side can
be used to create either an image (PNG, JPEG, TIFF, SVG) or a PDF
file. While JPEGs have smaller file sizes due to compression, their
quality is also limited. PNGs are usually preferable (e.g. on
websites or in presentations). TIFF and SVG offer higher quality
when the plot is intended to be scaled to a bigger image, e.g. for
posters.

The option “Copy to Clipboard...” lets the user paste the plot into
an existing document. WMFs (Windows Metafiles) can be scaled
freely in Microsoft Word or PowerPoint. Bitmaps are
uncompressed raster graphics.

Exporting plots to files

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Scripted export

File export can be part of the R script. This is preferable when a
large number of plots is created, e.g. as part of a for-loop. Four
steps are needed:

1. Set the path where files should be saved
2. Set image properties
3. Create plot
4. Export file

It can look like this:

setwd("C:/...") # step 1
jpeg("rplot4.jpg", width=1080, height=480, pointsize=25) # step 2
barplot(table(sample(1:6,50, T)), main="Rolling 50 dice") # step 3
dev.off() # step 4

The first step is explained in chapter 1.2. This can be omitted when
the filename in the second step contains a complete and valid path.

For the second step, any of these functions: jpeg(), png(), tiff(),
bmp() can be used to create a respective file. By typing “?jpeg” (etc.)
into the console, their parameters are explained within the help
window. Common parameters include the size (height and width) as
well as the font size (pointsize). Please note that the file name’s
suffix (“.jpeg”) must coincide with the function called (jpeg()).

For the third step many examples are already given within this
presentation. Even multiple plots framed together can be exported
into a single image file.

The fourth step creates the file in the specified working directory.

Conclusion

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

What have we learned?

In this lesson we looked at standard (“Vanilla R”) functions that create different types of plots and visualizations. hist() and bar plot() are great to
explore distributions within a dataset, while plot() creates two-dimensional graphs that visualize tendencies and dependencies between two data
variables. Instead of pie charts, we can usually find a better visualization method. Plots can be combined within a single coordinate system or as
independent plots within a frame. Many more functions exist to create specific visualizations.

Standard visualizations are best used for data exploration, i.e. quickly creating many different plots to get a better understanding of the dataset.
Their appearance does not have to be perfect for this purpose. Data exploration is often “quick and dirty”.

For the purpose of data presentation, we want to explore the package “ggplot2” in the next section. This package creates plots that are usually
more aesthetically pleasing. It also provides more options to control a plot’s appearance, e.g. through background rasters or color scaling.

