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Introduction

The language R provides many functions to visualize data 
in different ways: scatter plots, histograms, bar plots or pie 
charts to name only a few.

In this course we will look at the most common 
visualization techniques that are provided by R (without 
the use of additional packages, which will be subject to the 
next course):

● Visual data exploration
● Scatter plots (x/y plots)
● Histograms
● Bar plots
● Pie charts
● Combining plots
● Exporting plots to files
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Visual data exploration

An important initial step in data analysis is visual data 
exploration. An image says more than a thousand words, 
and a plot of data points more than any table could. Visual 
exploration is often considered “quick and dirty”, as plots 
do not have to be aesthetically pleasing to convey first 
impressions of the dataset. 

From an x/y plot, tendencies and outliers in the data might 
be observable. A histogram provides a quick glance at the 
data’s distribution. Visualizations with standard R 
functions are ideal for quick explorations, however, they 
might not deliver the most presentable graphics. In this 
course, we will focus on standard functions for the 
purpose of exploration, hence, we do not care too much 
about their looks. The upcoming course, in contrast, will 
focus on “nicer” visualizations using the package ggplot2.

Let’s have a quick look!
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Scatter plots
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plot( )

Scatter plots (also known as x/y plots) visualize one variable on 
the horizontal x-axis and one variable on the vertical y-axis. These 
plots are ideal to show the relation between two variables (e.g. a 
car’s weight and its horsepower) or mathematical functions. They 
are created by the plot( ) function. The function has following 
essential parameters:

● x, y # input for x and y variables
● col, pch # color and shape of dots
● xlab, ylab # labels for x and y axes
● main # plot title
● type # type of visualization
● lty, lwd # type and width of lines
● xlim, ylim # cropping x and y axes

We will now go through an example and gradually build a plot.



Scatter plots
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plot(x, y)

The input for the x and y variables has to fulfill two conditions:

● The two variables must be formatted as vectors
● The Variables must be the same length

The following code gives the most basic visualization of two 
variables (non-solid dots and axes labels based on vector names) 
of the dataset mtcars which contains the data of 32 cars. (This 
dataset is always available within RStudio.) The variables can be 
assigned to the parameters x and y. If not specified, R will interpret 
the first entry as x and the second as y.

plot(x=mtcars$hp, y=mtcars$wt) # specifying x and y
plot(mtcars$hp, mtcars$wt) # implied x and y variables



Scatter plots
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plot(x, y, col)

The col parameter determines the color of dots. There are different 
ways to specify the color:

● Color names like “red”, “blue” or “green” are easy and intuitive. 
They are humanly readable which makes the code easy to 
maintain. A full list of usable colors is given here: 
(http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf)

● Colors based on hexadecimal numbers representing the 
share of Red/Green/Blue (https://www.color-hex.com/)

● There are also functions that create colors palettes like the 
rainbow(n) function creating a vector with n different colors.

plot(x=mtcars$hp, y=mtcars$wt, col="red") # color names
plot(x=mtcars$hp, y=mtcars$wt, col="#FF0000") # HEX codes
plot(x=mtcars$hp, y=mtcars$wt, col=rainbow(1)) # functions

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
https://www.color-hex.com/


Scatterplots
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plot(x, y, col, pch)

The pch parameter stands for “plot character” and determines the 
visual representation of each data point. By default the plot uses 
non-solid dots (i.e. colored outlines of empty circles).

All options can be displayed in RStudio calling ?pch in the console. A 
0 creates non-solid squares, while a 15 creates solid squares filled by 
the chosen color.

It is highly recommended to use only a few basic options here, e.g. 
circles, triangles and squares to keep the plot simple.

# solid (i.e. colored) circles
plot(x=mtcars$hp, y=mtcars$wt, col="red", pch=16) 



Scatterplots
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plot(x, y, col, xlab, ylab, main)

The parameters xlab and ylab use strings (vectors containing text) to 
add labels to the x and y axes while main adds a title to the plot.

The following example creates the plot previously shown as an 
example. Please note that the code of the plot( ) function is here 
written over several lines. Adding line breaks after parameters can be 
useful to make the code easier to read and maintain. Thus, even 
annotations can be added into the function’s call.

plot(mtcars$hp, mtcars$wt, # horsepower against weight
     col="red", pch=16,  #red filled circles
     xlab="Horsepower", ylab="Weight",
     main="Relation between cars' weight and HP"
)



Scatter plots
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plot(x, y, type)

The type parameter can be used to switch from separated dots to 
connected lines. However, this might not be meaningful for all types 
of data (like the cars that are individual observations). Line-typed 
scatter plots can be used to display mathematical functions though.

The example shows four different plot types. Type “p” is the default 
and will be used if no type is specified.

x <- c(-10:10) # x variable: all integers from -10 to 10
y <- x^2 # y variable: x squared
plot(x, y, pch=16, type="p", main='type="p" (point)')
plot(x, y, pch=16, type="l", main='type="l" (line)') # note: minor L
plot(x, y, pch=16, type="b", main='type="b" (both)')
plot(x, y, pch=16, type="n", main='type="n" (nothing')



Scatter plots
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plot(x, y, lty, lwd)

The lines can further be adjusted using the parameters lty (line type) 
and lwd (line width). Please note the difference between setting the 
type to visualization to a line (type="l") and changing the type of the 
line (lty=...). The line types (lty) are indicated by integers with 1 being 
the default continuous line and 2 being a dashed line. (All higher 
integers give variations of a dashed lines.) The width is 1 by default 
and cannot be lower than that. A width of 2 or 3 is usually more than 
enough to emphasize a certain plot.

x <- c(-10:10) # x variable: all integers from -10 to 10
y <- 2*x+1 # function y = 2*x+1
plot(x,y, type="l", col="red", lty=1, lwd=1)
plot(x,y, type="l", col="blue", lty=2, lwd=1)
plot(x,y, type="l", col="red", lty=1, lwd=3)
plot(x,y, type="l", col="blue", lty=2, lwd=5)



Scatter plots
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plot(x, y, xlim, ylim)

The parameters xlim and ylim determine how much of each axis is 
shown. By default, the plot is sized to include all data points x/y. 
xlim and ylim require vectors that specify the interval, e.g. 
xlim=c(-5,5) reaches from x=-5 to x=5 . Thus, the user can limit 
which data points will be included in the graph or zoom into a 
specific area of a mathematical function.

Be aware of cropped or stretched axes as they can be used to 
manipulate how a reader interprets the plot. For example, the 
second plot suggests a smaller slope of the function.

plot(x,y, pch=16, type="l", main='y=x²')
plot(x,y, pch=16, type="l", xlim=c(-5,5))
plot(x,y, pch=16, type="l", ylim=c(0,400))
plot(x,y, pch=16, type="l", ,xlim=c(0,5), ylim=c(0,20))



Histograms
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hist(x)

Histograms are usually used to show distributions of datasets and 
frequencies of specific values or value intervals.

In this example we simulate the height of an adult population and 
visualize them with hist( ):

# creating 10,000 normally distributed values with …
# … a mean of 177 and a standard deviation of 5:
x <- rnorm(10000, 177, 5)

hist(x, col="lightgray", xlab="Height (cm)")
hist(x, breaks=50, col="lightgray", xlab="Height (cm)")
hist(x, breaks=100, col="lightgray", xlab="Height (cm)")
hist(x, breaks=200, col="lightgray", xlab="Height (cm)")



Histograms
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h <- hist(x)

The hist( ) creates a histogram object that can be assigned to a 
variable. Thus, statistics about the distribution become available. 

In this example, the first bin includes all numbers (4 cases) from 
160 to 165. The individual counts divided by their sum give the 
percentage of each bin, e.g. 4% for the first bin.

# creating numbers with seed 42 (to get the same random 
numbers every time)
set.seed(42); x <- rnorm(n=100, m=177, sd=5)

h <- hist(x)
h$breaks # output: 160 165 170 175 180 185 190
h$counts # output: 4  4 23 36 30  3
h$counts/sum(h$counts) # output: 0.04 0.04 0.23 0.36 0.30 0.03



Bar plots
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barplot(table(x), xlab, ylab, main, col)

Bar plots and histograms look rather similar -- both show frequencies and 
distributions of data -- but are used for different types of data. (The differences 
will be discussed on the next slide.) The barplot( ) creates a bar for each unique 
data category (e.g. biological sex, school grades, etc.) within a data vector and 
shows how often it appears in the dataset. The table( ) function calculates the 
frequencies of all data categories of a vector (e.g. male: 23, female: 25) and can 
be used as input for the barplot( ). The plot( ) parameters like “xlab”, “ylab”, 
“main” and “col” can also be used for bar plots. While the parameters “xlim” and 
“ylim” are applicable, they usually mess up the graph and should be avoided.

# the sum of two six-sided dice, 10,000 simulations
dice <- sample(1:6,10000, T) + sample(1:6,10000, T)

# barplot of frequencies of unique values in dataset “dice”
barplot(table(dice))



Bar plots
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Bar plot( ) or hist( )?

Bar plots and histograms look rather similar -- both show frequencies and 
distributions of data -- but are used for different types of data. 

Bar plots are better used when the data is categorical, i.e. there is a finite 
set of possible values (e.g. biological sexes, defined income groups, 
school grades). In the left column, barplot( ) is better as the categories are 
clearly distinguishable. The histogram, for examples, puts values for “2” 
and “3” in one bin, as there are only 10 bins for 11 categories.

Histograms are better used for discrete or continuous data that might 
have an infinite amount of different possible values (e.g. measurements 
like height in cm). In the right column, the barplot( ) is a bad choice as 
each value (160.01, 160.02, …) is given its own bar. While the histogram 
shows less detail for each unique value, the overall frequency is clearer.

(Code on next slide.)
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Bar plot( ) or hist( )?
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# create random data
dice <- sample(1:6,1000, T) + sample(1:6,1000, T)
height <- round(rnorm(1000, 177, 5),2)

# top left:
barplot(table(dice),  xlab="Sum of eyes", col="red")

#top right:
barplot(table(height),xlab="Height (cm)", col="blue")

# bottom left:
hist(dice, xlab="Sum of eyes", col="red")

#bottom right:
hist(height, breaks=40, col="blue", xlab="Height (cm)")



Pie charts

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

pie(table(x), label, main)

Pie charts show the frequency of unique elements in a dataset (like bar plots) 
as shares of a circle area.

They also use the table( ) of a data vector as primary input. The parameter 
“label” does not refer to axes but to the annotations put next to each slice of pie. 
We can use the names( ) of the data table( ), as shown below, or manually 
specify a vector of names (e.g. c(“one eye”, “two eyes”, “three eyes”)).

# the sum of two six-sided dice, 10,000 simulations
dice <- sample(1:6,10000, T) + sample(1:6,10000, T)

# barplot of frequencies of unique values in dataset “dice”
pie(x=table(dice), label=names(table(dice)),
    main="Probability of eyes (2 six-sided dice)")



Pie charts
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“The Golden Rule of Pie Charts”

The “Golden Rule of Pie Charts” states: “Do not use pie charts.”

While immensely popular (especially since the advent of Microsoft Excel), pie 
charts are often times not the most effective way to present information. The 
bar plot and the pie chart on the side display the same data. The bar plot 
enables a direct comparison between categories, e.g. “8” is more likely than “6”. 
The slices of a pie chart make a direct comparison more difficult -- try to order 
the slices by size!

In most cases plots with horizontally aligned bars or all categories stacked onto 
one bar are a better choice. Pie charts are only viable if only two or three 
categories are shown at once (e.g. YES/NO). Please note that some people 
have impaired vision and may struggle with a graph that relies on colors to 
distinguish categories, which is usually the case for pie charts. 



Combining plots
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Multiple graphs in one plot

In case we want to include multiple graphs in the same plot, we 
cannot simply call two plot( ) functions after each other as the 
second one will create an independent instance of a plot.

x <- c(-10:10) #x: all integers from -10 to 10
y1 <- 2*x+1 #function 1: x=2x+1
y2 <- 3*x -2 #function 2: x=3x-2

# plot first function:
plot(x,y1, type="l", col="red", main="y1=2*x+1")

# plot second function … in a new plot
plot(x,y2, type="l", col="blue", main="y2=3*x-2")



Combining plots
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Multiple graphs in one plot

In this example we added two more graphs by using lines( ) and 
points( ). When these functions are called, they will add to the last 
call of plot( ). They cannot work on their own.

The additional graphs are not fully shown as the axes intervals 
only depend on plot( ). We fix this in the next step!

# plot first function:
plot(x,y1, type="l", col="red")

# add second function with blue lines (type=”l”):
lines(x,y2, col="blue")

# add second function with green points (type=”p”):
points(x,y2, col="green")



Combining plots
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Multiple graphs in one plot

The range(x) function returns a vector showing the smallest and 
biggest number that a vector x contains. In this case the two 
functions have different intervals on the y-axis due to the different 
slopes. We can use range( ) to adjust xlim and ylim dynamically. 
Now all data points are shown in the plot!

range(y1) #-19 21 range of y1
range(y2) #-32 28 range of y2
range(c(y1,y2)) #-32 28 range of y1 and y2 combined

# adjust the ylim using range
plot(x,y1, type="l", col="red", ylim=range(c(y1,y2)))
lines(x,y2, col="blue")
points(x,y2, col="green")



Combining plots
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Adding axes to plots (abline( ))

Does this function’s (y=2x²-10) y value go below 0? Certainly, for 
the y value for x=0 must be -10. But it is difficult to see in the plot. 
Sometimes it can be handy to add horizontal or vertical lines to a 
plot to show where the axes would be.

The function abline( ) can be used to add linear functions (y=a+bx) 
to a plot without calculating the numbers or adjusting intervals. 
The parameter “a” indicates the intercept (the y value we get when 
x=0), while “b” indicates the slope (b=2, for each unit in the positive 
x direction, we move 2 units in the positive y direction).

abline(a=0, b=1) # y=0+1x
abline(a=1, b=2) # y=1+2x



Combining plots
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Adding axes to plots (abline( ))

The following plot is enhanced using several abline( ) functions.

x <- c(-10:10) # x: all integers from -10 to 10
y <- 2*x^2 - 10 # y: function y=2x²-10

# create an empty plot (type="n")
# thus, the axes are drawn first and not on top of the graph
plot(x,y, pch=16, type="n", main='y=2*x²-10')

# add axes as ablines:
abline(h=0, col="lightgray")  # [h]orizontal line: y=0 (x axis)
abline(v=0, col="lightgray")  # [v]ertical line: x=0 (y axis)
lines(x,y) # y=2x²-10, drawn after the axes to be on top
abline(a=0, b=4, col="red") # first derivative of y: y’=0+4x



Combining plots

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

Multiple plots in a shared frame

Not all graphs can (or should) be combined into a single plot. The 
command “par(mfrow=c(m, n))” creates a raster with m rows and 
n columns in which the next m times n plots are inserted. First we 
specify the number of [R]ows m and then the number of [C]olumns 
n (mnemonic aid: [R]e[C]tangle). It is recommended to reset the 
frame back to 1 by 1 using “par(mfrow=c(1,1))” after all desired 
plots are printed so the next set of plots will be displayed 
individually again.

par(mfrow=c(2,2)) # open frame: 2 rows, 2 columns
barplot(table(sample(1:6,50, T)), main="Plot 1")
barplot(table(sample(1:6,50, T)), main="Plot 2")
barplot(table(sample(1:6,50, T)), main="Plot 3")
barplot(table(sample(1:6,50, T)), main="Plot 4")
par(mfrow=c(1,1)) # reset frame back to individual display



Exporting plots to files 
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Manual export

R and RStudio offer several ways to export plots to files. 

After a plot is created, the “Export” button shown on the side can 
be used to create either an image (PNG, JPEG, TIFF, SVG) or a PDF 
file. While JPEGs have smaller file sizes due to compression, their 
quality is also limited. PNGs are usually preferable (e.g. on 
websites or in presentations). TIFF and SVG offer higher quality 
when the plot is intended to be scaled to a bigger image, e.g. for 
posters.

The option “Copy to Clipboard...” lets the user paste the plot into 
an existing document. WMFs (Windows Metafiles) can be scaled 
freely in Microsoft Word or PowerPoint. Bitmaps are 
uncompressed raster graphics.



Exporting plots to files 
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Scripted export

File export can be part of the R script. This is preferable when a 
large number of plots is created, e.g. as part of a for-loop. Four 
steps are needed:

1. Set the path where files should be saved
2. Set image properties
3. Create plot
4. Export file

It can look like this:

setwd("C:/...")                                            # step 1
jpeg("rplot4.jpg", width=1080, height=480, pointsize=25)  # step 2
barplot(table(sample(1:6,50, T)), main="Rolling 50 dice") # step 3
dev.off()                                                                                      # step 4

The first step is explained in chapter 1.2. This can be omitted when 
the filename in the second step contains a complete and valid path.

For the second step, any of these functions: jpeg( ), png( ), tiff( ), 
bmp( ) can be used to create a respective file. By typing “?jpeg” (etc.) 
into the console, their parameters are explained within the help 
window. Common parameters include the size (height and width) as 
well as the font size (pointsize). Please note that the file name’s 
suffix (“.jpeg”) must coincide with the function called (jpeg( )).

For the third step many examples are already given within this 
presentation. Even multiple plots framed together can be exported 
into a single image file.

The fourth step creates the file in the specified working directory.



Conclusion

3.1 Basic visualization functions | Hannes Seller, Jonathan Young (2020)

What have we learned?

In this lesson we looked at standard (“Vanilla R”) functions that create different types of plots and visualizations. hist( ) and bar plot( ) are great to 
explore distributions within a dataset, while plot( ) creates two-dimensional graphs that visualize tendencies and dependencies between two data 
variables. Instead of pie charts, we can usually find a better visualization method. Plots can be combined within a single coordinate system or as 
independent plots within a frame. Many more functions exist to create specific visualizations. 

Standard visualizations are best used for data exploration, i.e. quickly creating many different plots to get a better understanding of the dataset. 
Their appearance does not have to be perfect for this purpose. Data exploration is often “quick and dirty”.

For the purpose of data presentation, we want to explore the package “ggplot2” in the next section. This package creates plots that are usually 
more aesthetically pleasing. It also provides more options to control a plot’s appearance, e.g. through background rasters or color scaling.


