
Data manipulation and
visualization with R

1.2 Introduction to the R language

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

1.3 Introduction to the R language

Overview

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

In this chapter we will learn the basics of the R language.

While learning the basics of a new (natural or programming) language can happen rather quickly, the process of mastering it will require several
years of dedication and hard work. After reading this chapter, you will not be a master in R programming. But you will have a good grasp on the
fundamental concepts of the language. Our goal is to give an introduction to all central topics that you will eventually come across along the way.

First, we will look at the syntax and semantic of the R language: the basic grammar. As R is used for many different types of statistical data
analyses, we will explore all relevant types of data and how they are structured. We will look at methods to iterate over elements of a dataset, using
for-loops, and the principle of conditional statements to check the validity of statements and propositions. Finally, we will learn how to use packages
that will provide advanced or more specified functions to the programming language.

Most of these topics will also reappear in later chapters, where we will take a closer look at them.

Syntax and semantic

Syntax

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

Programming is a communication process between a user and a computer. The computer can only make sense of our commands when we use
the right syntax. This term refers to “the way in which linguistic elements (such as words) are put together to form constituents (such as phrases
or clauses)” (https://www.merriam-webster.com/dictionary/syntax). Any typo or incorrect use of signs and characters will leave our code
incomprensible to the computer. The following table showcases a few instances where incorrect syntax is used in English as well as in R. The
three shown types of syntax errors belong to the major reasons why code may not work as intended by the programmer.

Syntax error Natural language example Programming language example

Wrong punctuation I went. to bed. Correct: as.numeric(5)
Incorrect: asnumeric(5)

Wrong word order I to bed went. Correct: as.numeric(5)
Incorrect: 5.as.numeric()

Typos I went to bad. Correct: as.numeric(5)
Incorrect: as.numerc(5)

https://www.merriam-webster.com/dictionary/syntax

Syntax and semantic

Semantic

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

Semantic relates to the “meaning in language”. A sentence without grammatical mistakes or typos can be void of any meaning or be
uninterpretable. For example, the following sentence by Noam Chomsky, although grammatically correct, has no comprehensible meaning:

“Colorless green ideas sleep furiously.”

Semantic errors in coding can be hard to spot as the computer may be able to execute the code when the command has correct syntax. The
result, however, may be nonsensical or simply an answer to a question the programmer never asked.

The following coding example uses correct syntax and returns a correct result. Nonetheless, the command is rather pointless: The mean of the
mean of the mean of 5 (equivalent to: (((5/1)/1)/1)) is always 5 itself.

mean(mean(mean(5)))

Syntax and semantic

Case sensitivity

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

In the syntax of R, uppercase and lowercase letters are distinct, e.g.
“R” and “r” are treated as entirely different characters.

The first example shows an incorrect way to call the “mean()”
functions. The vast majority of functions use lowercase letters in their
names. Calling a function by a wrong name will not trigger it.

This principle also applies to the declaration of variables. “X” and “x”
would be stored as two different variables without any connection to
each other. A consistent way of naming variables is recommended to
avoid confusion.

For variables and functions with longer names, “camelCasing” is
often used, where a capital letter indicates the beginning of a new
word.

example 1: wrong use of uppercase letters in functions
mean(...) # the mean() function uses all lowercase letters
Mean(...) # uppercase “M”
MEAN(...) # all uppercase letters

example 2: wrong use of uppercase letters in variables
x = 5 # save the value 5 as a variable called “x”
print(x) # display the value of x on the screen
print(X) # error: object “X” not found

example 3: how to give variables proper names
numberofevilexes = 7 # variable is difficult to read
numberOfEvilExes = 7 # variable name is easier to read
addDataFrame(...) # example of function using camelCasing

Syntax and semantic

Common mistakes and oversights

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

One of the most common syntax mistakes concerns brackets: (), { }, []. All three kinds of brackets are used in a different way and are not
interchangeable. We will discuss all of them in later chapters. Every bracket opened must be closed: “function1(function2(function3(data)))”.
Mixed brackets close in reversed order of opening: “function(data[selection])”.

The letters “c”/”C”, “s”/“S” and “x”/”X” are often difficult to tell apart. Variables and functions should use uppercase and lowercase letters
consistently to avoid confusion. For example, one variable called “x” and one called “Y” will eventually lead to the programmer calling “X” or “y” by
mistake.

Variables should not contain any special signs like “/”, “*”, or “\” as they may trigger something unintended. Underscores “_” are often used by
some programmers instead of camelCasing. Underscoring makes individual names in functions and variables more obvious, but also leads to
longer names to type. This is mostly a matter of preference, though we recommend sticking to one prefered coding style. For example, the
variables “x_Pos” and “positionY” will lead to confusion while coding; better to call them “xPosition” and “yPosition” (or “x_Position” and
“y_Position”) for clarity. When copying code from the internet (e.g. stackoverflow.com), the code should be adjusted to go along with the coding
style already used to avoid the implementation of inconsistencies.

Data types and classes

Introduction

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

R is an object-oriented programming language (like Java or Python), where each data used within the program has a specific class and a type.
The exact definitions of “data class” and “data type” are not relevant for this course and, hence, will be omitted. Simply put: All data has to be
put into a specific container for the program to know how to handle it. For example, numbers can be added and multiplied, combinations of
letters to words cannot.

Atomic or primitive data types are the simplest building blocks of the programming language. They can either be individual numbers, letters or
logical states (TRUE / FALSE). In this course we will look at the following atomic data types: logical, integer, double and character. There are
further types like complex numbers which will not be discussed in this course.

These building blocks can be combined within data structures to objects containing data, like lists of names or tables of numbers. Data
structures are containers that can include types of atomic data. In this course we will look at: vectors, lists, factors, matrices and data.frames.

Data types and classes

Atomic data types: Logicals

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

At first we will look at logicals. In other programming languages they
are also known as Booleans, named after George Boole (1815-1864).
They represent two binary states: TRUE / FALSE.

Logicals are mainly used in conditional programming: DO something
IF condition is fulfilled or to receive a feedback for a specific
condition or comparison.

Please note that R uses logicals in all caps: TRUE and FALSE while
other languages use them written with minor letters. R also accepts
the short versions T and F. However, this is not recommended as the
user may introduce variables named “T” or “F” which will then break
the code unintentionally.

To compare two statements “==” is used.

Check validity of a statement
Is 1 equal to 1?
1 == 1
output: TRUE (because both sides are equal)

Is 1 equal to 2?
1 == 2
output: FALSE (because both sides are different)

Logicals can be compared to other logicals:
T==T # output: TRUE (because both sides are equal)
F==F # output: TRUE (because both sides are equal)
F==T # output: FALSE (because both sides are different)
T==F # output: FALSE (because both sides are different)

Data types and classes

Atomic data types: Logicals

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

Logical comparisons can also include mathematical operations.

Functions like identical() check two variables and return a logical.

1+1 == 2
output: TRUE (1 plus 1 is equal to 2)

1+1 == 2+2
output: FALSE (2 is not equal to 4)

Logical comparisons can also be made using variables.

Logicals and related functions will be discussed in greater detail
later in this chapter.

a <- TRUE
b <- TRUE
c <- FALSE

a==b
output: TRUE (TRUE is equal to TRUE)

a==c
output: FALSE (TRUE is not equal to FALSE)
 identical(1, 1)

output: TRUE (1 and are identical)

identical(1+1, 2)
output: TRUE (1+1 is identical to 2)

Data types and classes

Atomic data types: Double and integer

1.2 Introduction to RStudio | Hannes Seller, Jonathan Young (2020)

In most cases, numbers have either the type double or integer.

Doubles are numbers that might have a decimal precision, e.g. 1.5 or
3.14. In other languages they are also known as floats. While the type
of a decimal number is “double”, its class is “numeric”. In this course
we will use these terms synonymously.

Integers are numbers without decimal places (“whole numbers”).

The different types were introduced when the computers’ memories
were more limited. As an integer would not require bits to store
decimal places, it was more efficient to store values that will always
be whole numbers (such as years) as integer types. Nowadays this
division is less meaningful.

check types of numbers
If not explicitly declared, all numbers will be created as doubles.
typeof(3.1) # output: “double”
typeof(3) # output: “double”

Integers can be created using “as.integer(x)”
if necessary rounded down to the next lowest whole number
as.integer(3.5) # output: 3
typeof(as.integer(3.5)) # output: “integer”

Numbers with quotation marks are not recognized as either type
typeof("3.5") # output: “character”
typeof(as.integer("3.5")) # output: “integer”

Data types and classes

Atomic data types: Character

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Characters are individual letters or numbers or combinations thereof.
They are identified by surrounding quotation marks. A group of letters
and numbers within a single character container is called a string.

Everything put between quotation marks will be will be converted into
a character string: “this string of characters”, “R2D2”, “4”, “1+1”.
Mathematical operations on character are not possible.

Please note that R does not recognize cursive quotation marks as
used in Word or PowerPoint. They will break the code.

Trying to do operations with characters:
1+1 # output: 2
1+"1" # output: error (non-numeric argument)
"1"+"1" # output: error (non-numeric argument)

To combine characters we use paste()
The separator (sep) includes separations
paste("Oh", "hi", "Mark", sep="") # output: "OhhiMark" (no sep)
paste0("Oh", "hi", "Mark",) # output: 2: "OhhiMark" (no sep)
paste("Oh", "hi", "Mark", , sep=" ") # output: "Oh hi Mark" (spaces)
paste("Oh", "hi", "Mark", , sep=",") # output: "Oh,hi,Mark" (commas)

paste(paste("Oh", "hi", sep=" "), "Mark", sep=", ")
output: "Oh hi, Mark" (spaces and commas)

create character string assigned to the variable called sentence
sentence <- "The quick brown fox jumps over the lazy dog"

typeof(sentence) # output: "character"

Data types and classes

Type Coercion

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Type coercion refers to a forced conversion of a data type to another.

The user can explicitly force a certain type onto data:

Coercion can lead to loss of information. Doubles are the most
specific type. Integers can be doubles but do not gain more decimal
precision. Doubles converted to integers lose all decimal places.
Logicals can be expressed as 0 or 1 if converted to numbers.
Characters can be converted only if they include pure numbers.

as.integer(3.5) # output: 3 (type integer)
as.character(3.5) # output: “3.5” (type character)
as.logical(1) # output: TRUE (type logical)
as.logical(0) # output: FALSE (type logical)

as.double as.integer as.logical as.character

Double (3.5) 3.5 3 TRUE* “3.5”

Integer (5) 5 5 TRUE* “5”

Logical (TRUE)
Logical (FALSE)

1
0

1
0

TRUE
FALSE

“TRUE”
“FALSE”

Character (“hello”)
Character (“3.5”)

NA**
3.5

NA**
3

NA**
NA**

“Hello”
“3.5”

Figure X: Type coercions can be applied to every type. However,
information might get lost.
* every number converted to a logical results in TRUE
** coercing characters into anything else results in NA, a missing value

Data structures

Vectors

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

The first data structure we will discuss are Vectors. Vectors are
one-dimensional mono-class data containers.

Unlike tables that have rows and columns, vectors are
one-dimensional, i.e. they only consist of one line of data, that is
neither a row nor a column. The function c() (“concatenate”)
combines atomic data to a vector:

A vector can only contain one type of atomic data and will force a
coercion if necessary.

c(1, 2, 3, 4) # a vector containing four numbers

c(1, "2" ,3, 4) # coercion to characters: c("1", "2", "3", "4")
c(1, FALSE, 3, 4) # coercion to doubles: c(1, 0, 3, 4)

Usually the c() function generates vectors
a <- c(1,2,3) # assign vector with three numbers to variable “a”

Colons can be used to create a series of numbers
1:10 # same as c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

c() can combine multiple series or vectors to one vector.
c(1:3, 5:10) # same as c(1, 2, 3, 5, 6, 7, 8, 9, 10)

a <- c(1,2,3)
b <- c(4,5,6)
c <- c("4","5","6") # note that a variable can also be called “c”

c(a,b) # same as c(1, 2, 3, 4, 5, 6)
c(a,c) # coercion to characters: c("1", "2", "3", "4", "5", "6")

Data structures

Factors

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Factors contain data but store them within a finite set of categories.
Any vector can be converted to a factor by using as.factor().

Calling a factor in the console, will display all “levels”. This can be
regarded as a mathematical set that contains each distinct entry
once. The example on the side shows that factor displays the levels 1
to 6.

Factors are useful when dealing with categorical data (e.g. genders,
school grades). However, even though they can contain numbers,
mathematical operations on them are impossible as they are not
converted as doubles or integers. They can be converted back to
vectors by using as.vector() or, preferably, a type-specific conversion
like as.double() or as.character() to ensure they receive the desired
type format.

Creating a vector of numbers
a <- c(1,1,2,1,4,5,6,2,4,5,6,3,3,1,4)
sum(a) # output: 48

Conversion to factor
b <- as.factor(a)
#output:
[1] 1 1 2 1 4 5 6 2 4 5 6 3 3 1 4; Levels: 1 2 3 4 5 6

sum(b) # output: error (‘sum’ not meaningful for factors)

Conversion back to numbers
a <- as.double(b)
sum(a) # output: 48

Data structures

Factors

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

While some categorical data are unordered (e.g. genders could be
M/F or F/M) other categorical data need an order to have meaning
(e.g. “low” / “med” / “high” rankings or school grades).

The example on the side creates a vector of received school grades
in a factor format. By calling levels(data) the levels are presented in
an alphabetical order, which, like here, does not always make sense.

The second example therefore specifies which levels the data should
include and whether they should be ordered or not. Here they are
brought in a logical ranking order.

With the function table() the frequency of each level can be
displayed. The table also respects the order we established for the
factor.

creating a factor vector of school grades
a <- factor(c("good", "very good", "excellent","good","good","fail",
"satisfactory","very good", "fail"))
levels(a)
#output: "excellent" "fail" "good" "satisfactory" "very good"

a <- factor(
c("good", "very good", "excellent","good","good","fail",
"satisfactory","very good", "fail"),

 levels=c("excellent", "very good", "good", "satisfactory", "fail"),
 ordered=TRUE)

levels(a) #output: "excellent" "very good" "good" "satisfactory" "fail"
nlevels(a) #output: there are 5 different levels
table(a) #output:
 excellent very good good satisfactory fail
 1 2 3 1 2

Data structures

Matrices

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Matrices (plural of matrix) are multi-dimensional mono-class data
containers.

A matrix is two dimensional: It has rows and columns. Any vector can
be converted to a matrix (by default having one column and as many
rows as the vector has data).

A matrix can only contain one type of atomic data and will force a
coercion if necessary.

as.matrix(c(1, 2, 3, 4)) # a matrix containing a column of numbers

as.matrix() converts vectors to matrices.
a <- c(1,2,3)
b <- c(4,5,6)
A <- as.matrix(c(a,b))

 [,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5
[6,] 6

Numbers in square brackets indicate the row and column index.
[x,] are rows, [,x] are columns

Data structures

Matrices

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

The matrix() function has arguments to create a desired number of
rows and columns, as shown on the side.

An “m by n” matrix has m rows and n columns. It is crucial to
memorize which number indicates which dimension, especially for
data selection tasks. For example, A[1,2] selects the first row and the
second column of matrix A. This will be further explained in the
chapter 2.2 about data selection.

A mnemonic aid can be found in the word “RECTANGLE” where the
“R” (for “row”) comes before the “C” (for “column”). A matrix will
always have a rectangular shape.

matrix() converts vectors to matrices.
a <- c(1,2,3)
b <- c(4,5,6)

specify number of rows:
matrix(c(a,b), nrow=2)
 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

specify number of columns:
matrix(c(a,b), ncol=2)
 [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

Data structures

Matrices

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Many functions can be applied to matrices to gain summaries about
values and parameters. Some of them work the same for vectors and
matrices, but a few will only work with matrices.

matrix() converts vectors to matrices.
a <- c(1,2,3)
b <- c(4,5,6)
A <- matrix(c(a,b), nrow=2)

length(A) # output: 6 (there are six elements in the matrix)
length(a) # output: 6 (there are six elements in the vector)

dim(A) # output: 2 3 (indicating a 2 by 3 matrix)
dim(a) # output: NULL

nrow(A) # output: 2 (there are two rows)
nrow(a) # output: NULL

ncol(A) # output: 3 (there are three columns)
ncol(a) # output: NULL

Function Description Vectors Matrices

length() Returns number of elements yes yes

dim() Returns dimensions as
m by n (rows by columns)

no yes

nrow() Returns number of rows no yes

ncol() Returns number of columns no yes

Data structures

Dataframes (DF)

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Dataframes (DF) are multi-dimensional multi-class data containers.
Unlike matrices, each column of a DF can contain a different type of
data. Most data tables will be formatted as dataframes.

The example on the side shows the creation of a matrix and a DF
from two similar vectors a and b. As a and b have different types, the
matrix coerces the type of all data to characters.

The DF is created by combining columns (cbind()) of equal lengths
(the two vectors). Its representation in the console differs. The
columns are given the names of the vectors used to create them.

a <- c(1,2,3) # vector of doubles
b <- c("x","y","z") # vector of characters

creating a matrix from two vectors:
matrix(c(a,b), ncol=2)
 [,1] [,2]
[1,] "1" "x"
[2,] "2" "y"
[3,] "3" "z"

creating a DF from two vectors:
data.frame(cbind(a,b))
 a b
1 1 x
2 2 y
3 3 z

Data structures

Dataframes (DF)

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

If a DF is assigned to a variable name (in this case A), the columns
can be accessed individually by calling dataframe$column (e.g. A$a).
The output is a vector of the column’s data type.

By default, the columns are often formatted as factors depending on
the way and function used to create them. It is therefore crucial to
check the columns’ types before using them in more complex
operations.

A column can be overwritten by another vector of equal length. Thus,
it is possible to overwrite a vector by a type-converted version of
itself, as shown in the example. This can also be used to create new
columns of equal length:

creating a DF from two vectors:
A <- data.frame(cbind(a,b))
 a b
1 1 x
2 2 y
3 3 z

Checking columns
A$a # output: [1] 1 2 3; Levels: 1 2 3
A$b # output: [1] x y z; Levels: x y z

Manual conversion
A$a <- as.double(A$a)
A$b <- as.character(A$b)

Checking columns
A$a # output: [1] 1 2 3
A$b # output: [1] “x” “y” “z”A$c <- c(TRUE, FALSE, TRUE) # creating new column c

Data structures

Dataframes (DF)

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

DFs have many advantages over matrices in regards to data
analyses. The columns are easier to navigate as they have specific
names instead of only indices.

The example on the right shows a DF with two columns “a” and “b”.
By calling names(DF) the names of all columns are listed. This can be
handy when data tables become large. However, this function can
also be used to overwrite existing column names by manually defined
ones, as shown in the example. Now the columns are labeled
A$Numbers and A$Letters.

The str() function (short for “structure”) shows a summary for each
column. In this case, both columns are formatted as factors with
three levels each.

creating a DF from two vectors:
a <- c(1,2,3,3) # vector of doubles
b <- c("x","y","z","x") # vector of characters
A <- data.frame(cbind(a,b))
 a b
1 1 x
2 2 y
3 3 z
3 3 x

names(A) # output: "a" "b"

names(A) <- c("Numbers", "Letters")

str(A) # output:
'data.frame': 4 obs. of 2 variables:
 $ Numbers: Factor w/ 3 levels "1","2","3": 1 2 3 3
 $ Letters: Factor w/ 3 levels "x","y","z": 1 2 3 1

Data structures

Lists

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

The last data structure we will discuss are lists which are containers
for other data containers. A list can combine vectors, matrices, DF
and factors into a single object.

The list() command can take any number of elements as inputs:

The list gives indices to all elements and all their items. Elements can
be accessed by double square brackets (list[[index_element]]) and
their respective items with additional single square brackets
(list[[index_element]][index_item]).

creating three different vectors
a <- c(1,2,3,4,5,6)
b <- c(TRUE, FALSE, TRUE, FALSE)
c <- c("x", "y", "z")

creating a list from three different vectors
list_1 <- list(a,b,c)

output
[[1]] # first element
[1] 1 2 3 4 5 6

[[2]] # second element
[1] TRUE FALSE TRUE FALSE

[[3]] # third element
[1] "x" "y" "z"

list_name <- list(element1, element2, …) # creating new column c

list_name[[1]] # output: [1] 1 2 3 4 5 6 (entire first element)
list_name[[3]][2] # output: "y" (second item of third element)

for-loops

Introduction

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Loops are a core principle in all programming languages.
Unfortunately, all languages use loops with a slightly different syntax.
A loop repeats certain actions as long as a condition is fulfilled.

This can be used to trigger a function several times in a row. For
example, calling a function that returns the current time a hundred
times, would only require one loop instead of 100 individual lines of
code.

In R, loops are often used to iterate over elements of a data container.
The command “for(i in vector){ }” would iterate over each element of
the vector, e.g. to show each element on screen, to tally up all
elements to a sum, or to search a container for a specific value.
Round brackets contain the condition, while swirly brackets contain
the action.

template: for each element i in the dataContainer, apply function
“doSomething()” to that element i
for(i in dataContainer){

doSomething(i)
}

print all element i to the screen
vector <- c(1:5) # all numbers from 1 to 5
sum <- 0 # empty container for the sum
for(i in vector){ # for each element in vector
 print(i) # output print: 1 … 2 … 3 … 4 … 5
 sum <- sum + i # add the element to the sum
}
print(sum) # output sum: 15

for-loops

Looping over indices

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

A common way to iterate over elements of a container is the index
method. The index indicates the position of an element within the
container from position 1 to n, where n is equal to the length of the
container (i.e. the number of its elements): “i in 1:length(data)”

Please note, that R starts counting indices with 1, while many other
language start with index 0.

The index of an element is not necessarily equal to its value. In the
following example, the value of index 1 is 100, the value of index 2 is
200, and so on.

vector <- c(100, 200, 400, 700, 800) # values of vector
index 1: 100, index 2: 200, index 3: 400, … # indices of vector

template: for each index i from 1 to length of dataContainer, apply
the index to the function doSomething(i)
for(i in 1:length(dataContainer)){

doSomething(i)
}

print all element with index i to the screen
vector <- c(11:15) # vector values: 11, 12, 13, 14, 15
for(i in 1:length(vector)){ # indices i: 1, 2, 3, 4, 5
 print(vector[i]) # print value of index i
}
output: 11 … 12 … 13 … 14 … 15

for-loops

Looping over elements

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

The loop can also apply functions directly to the elements of a data
container. This can be useful when the elements are not stored in a
particular order and the creation of an index would have no further
use.

When working with matrices or dataframes, the user might want to
make the index part of the outgoing data structure, e.g. by storing the
index within an “Index” column, so that element n is also given index
n. If the index number itself is not needed for any further calculations
or declarations, the loop can access each element directly.

The example was already shown on the introduction slide.

template: for each element i in the dataContainer, apply function
“doSomething()” to that element i
for(i in dataContainer){

doSomething(i)
}

print all element i to the screen
vector <- c(1:5) # all numbers from 1 to 5
sum <- 0 # empty container for the sum
for(i in vector){ # for each element in vector
 print(i) # output print: 1 … 2 … 3 … 4 … 5
 sum <- sum + i # add the element to the sum
}
print(sum) # output sum: 15

for-loops

Nested loops

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

We speak of “nested loops” when loops contain further loops.

By convention, the first loop iterates over elements i, while a second
loop iterates over elements j. A nested loop can have many individual
layers. However, if more than two loops are nested, the elements
should be named more clearly (e.g. “family in house” and “member in
family”).

The loop initiated last, will complete first. The example on the side
will start with i=1 and iterate through j=3 … 4 before changing to i=2
and then iterate through j=3 … 4 again. The total number of iterations
is the product of all elements. In this case: length(i)*length(j)=5*2=10.
A nested loop with three layers of 100 elements each needs a million
iterations (100 * 100 * 100), which might take some time. Hence, be
aware of the needed iterations before starting a nested loop!

template: for each element i in the dataContainer, apply function
“doSomething()” to that element i
for(i in dataContainer){

doSomething(i)
}

for(i in 1:5){ # for each element of value 1 … 2 … 3 … 4 … 5
 for(j in 3:4){ # for each element of value 3 … 4 … 5
 print(i+j) # print the sum of i+j … 1+3=4, 1+4=5, 2+3=5, ...
 }
}

Conditional statements

Truth tables, AND, OR, negation

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

The core principle of conditional statements and conditional
programming is to test whether a statement is TRUE or FALSE and
which action(s) should be done in either case.

The table on the right is called a truth table. It contains the
propositions X and Y, which are either TRUE or FALSE and each
possible combination of their values.

Logical operators can be applied to these statements. The logical
AND (&) is TRUE when both X and Y are TRUE (conjunction). The
logical OR (|) is TRUE when either X or Y (or both) are TRUE
(disjunction). In R the “!” in front of logical variables or statements
indicates a negation: every TRUE becomes FALSE and vice versa.

X Y AND: X&Y OR: X | Y Not X: !X Not Y: !Y

TRUE TRUE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE

FALSE TRUE FALSE TRUE TRUE FALSE

FALSE FALSE FALSE FALSE TRUE TRUE

X <- c(T, T, F, F) # creating logical vector X
Y <- c(T, F, T, F) # creating logical vector Y

X & Y # output: TRUE FALSE FALSE FALSE
X | Y # output: TRUE TRUE TRUE FALSE
!X # output: FALSE FALSE TRUE TRUE

Conditional statements

Comparisons and data queries

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Comparisons are indicated by a “==” and are similar to the logical
AND: only if both sides of the comparison are the same, the output
value will be TRUE. A negated comparison “!=” (not equal) is TRUE
when both sides are different. R also allows comparisons:

● bigger than (x>y),
● smaller than (x<y),
● bigger or equal (x>=y) and
● smaller or equal (x<=y)

2 == 1+1 # output: TRUE (2 is the same as 1+1)
1 == 2 # output: FALSE (1 is not the same as 2)
1 != 2 # output: TRUE (1 is not the same as 2)
2 >= 1+1 # output: TRUE (2 is bigger or equal to 1+1)

Comparisons can also be used for data queries, e.g. does this data
contain this specific value?

numbers <- c(1,3,4,3,4,5,6,1) # creating a vector of numbers

numbers == 1 # checking each entry if it is a 1 or not
output: TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

any(numbers == 1) # does the vector contain the ANY number 1?
output: TRUE (if a clear short statement is wanted)

sum(numbers == 1) # how many 1’s does the vector contain?
output: 2 (as each TRUE is counted as 1 and each FALSE as 0).

mean(numbers == 1) # What is the probability of 1’s?
output: 0.25 (2*TRUE, 6*FALSE; 2 of 8 equals 25%).

Conditional statements

If-clauses

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

If-clauses are another principle of all programming languages. A
command will only be executed when a certain condition is fulfilled.

● if(TRUE) {do something}
● if(FALSE) {don’t do something}

If-clauses are used when an action should only be executed under
specific circumstances:

● if(doorbell rings) {open the door}
● if(I need new shoes) {buy new shoes}
● if(I don’t need new shoes) {don’t buy new shoes}

Similar to for-loops, we use round brackets for the condition and
swirly brackets for the actions.

example 1: execute when a logical is TRUE
bool <- TRUE
if(bool){
 print("The value is true.")
} # output: “The value is true.”

example 2: do not execute when a logical is FALSE
bool <- FALSE
if(bool){
 print("The value is true")
} # no output

example 3: execute when an equation or comparison is true
if(1+1 == 2){
 "The equation is correct."
} # output: “The equation is correct.”

Conditional statements

If- / else-clauses

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

When an if-clause is not triggered, usually nothing happens. However,
an alternative case can be defined that is always executed when the
if-condition is not fulfilled: the else-clause.

This is useful when we still want a feedback, that something did not
fulfill the condition. For example:

if(testing for disease is positive) {give patient response A}
else {give patient response B}

Naturally, the patient wants to know about the result in either case.
Only the response will be different.

Please note that the else-clause does not require a condition like the
if-clause, because it is automatically triggered when the if-condition
is FALSE.

example: if else statement to cover true and false conditions
if-clause triggered
if(1+1 < 5){
 "The equation is correct."
}else{
 "The equation is wrong."
}
output: “The equation is correct.”

else-clause triggered
if(1+1 > 5){
 "The equation is correct."
}else{
 "The equation is wrong."
}
output: “The equation is wrong.”

Conditional statements

If- / else- / else-if-clauses

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

An else-if-clause also gives the else-clause a condition. This is useful
when more than one condition could be fulfilled, but a prioritization
needs to happen. For example:

● if(wife wants to go to restaurant A) {go to restaurant A}
● else if(wife wants to go to restaurant B) {go to restaurant B}
● else if(wife wants to order food) {order food}
● else {starve}

Naturally, only one option will be chosen. The order matters: If one if-
or else-if-condition is fulfilled, all following else-clauses are
automatically denied.

In these examples we show that the condition and the action can be
put in the same line, when the action only consists of one line of
code.

example 1: both conditions are TRUE, both are triggered.
if(TRUE){print("First condition is TRUE")}
if(TRUE){print("Second condition is TRUE")}
output: "First condition is TRUE" … "Second condition is TRUE"

example 2: both conditions are TRUE, only first is triggered
if(TRUE){print("First condition is TRUE")
}else if(TRUE){print("Second condition is TRUE")}
output: "First condition is TRUE"

example 3: both conditions are FALSE, else is triggered
if(FALSE){print("First condition is TRUE")
}else if(FALSE){print("Second condition is TRUE.")
}else{print("No condition is TRUE.")}
output: "No condition is TRUE"

Conditional statements

Nested if-clauses

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

Finally, the following example brings everything together. We want to
check whether a number in a vector is divisible by either 2 or 3 or both.

The “modulo” operator “%%” returns the remainder of a division, e.g.
“3%%2” is 1. A remainder of 0 indicates that the first number is a
multiple of the second one. paste() is used to combine variables and
strings. Thus, we get a dynamic feedback based on i.

We first test whether a number is divisible by 2 OR 3. If not, the
else-clause is triggered. We then test whether the number is a multiple
of both 2 AND 3. If yes, the else-if-clauses will be skipped and the next
number is selected. If a number is divisible by 2 or 3 but not both, we
test if it is a multiple of 2 or 3 (here, the order does not matter, as we
know, that exactly one of them must be triggered.) Please take note of
the code’s indentations indicating the different layers of conditions and
loops.

example: nested if-, else- and else-if-clauses
Which numbers are divisible by 2, 3 or both?
vector <- c(1:12) # all numbers from 1 to 12

for(i in vector){ # for each element in vector (1 to 12)
 if(i %% 2 == 0 | i %% 3 == 0){ # if i is divisible by 2 OR 3
 if(i %% 2 == 0 & i %% 3 == 0){ # if i is divisible by 2 AND 3
 print(paste(i, "is divisible by 2 and 3."))
 } else if(i %% 2 == 0){ # else if i is div. only by 2
 print(paste(i, "is divisible by 2."))
 } else if(i %% 3 == 0){ # else if i is div. only by 3
 print(paste(i, "is divisible by 3."))
 }
 } else {print(paste(i, "is neither divisible by 2 or 3."))} # else
}

"1 is neither divisible by 2 or 3."
"2 is divisible by 2."
"3 is divisible by 3."
"4 is divisible by 2."
"5 is neither divisible by 2 or 3."
"6 is divisible by 2 and 3."

Packages

Packages

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

A package is a downloadable extension that provides functions not
implemented in the standard set of functions and commands.
Programmers often call software without extensions implemented by
the developers and without user customization "Vanilla" in reference
to, probably, the most basic ice cream flavor.

Packages can be downloaded manually or directly via R code
executed in RStudio. The following line of code installs the specified
package from the internet and all packages it needs to work:

Once a package is installed, it can be activated by this command:

install.packages("package_name")

In this course we will mainly deal with the packages dplyr
(manipulation of dataframes) and ggplot2 (data visualization).

Both packages are part of the package tidyverse, which includes
several packages designed for data science. Check out the collection
on its official website:

https://www.tidyverse.org/packages/

Other packages enable the import and manipulation of geospatial
data, Excel and XML files or various Machine Learning methods.
However, this exceeds this course’s scope.

library("package_name")

https://www.tidyverse.org/packages/

1.2 Introduction to the R language

What have we learned?

1.2 Introduction to the R language | Hannes Seller, Jonathan Young (2020)

In this chapter we learned about many core principles and methods used in the R language.

We learned about the language’s basic syntax and semantic, so we can have a smooth conversion with the program while coding.

Learning about the numerous data types and data structures is a big part of getting familiar with the language. While you do not need to memorize
many things by heart, it is recommended that you have a firm understanding of the data types and structures before you proceed. The manipulation
of data will be the focus of the next chapters.

The different conditional classes and loops will not be the main focus of the following chapters. But we will meet them again when we encounter a
good situation to make use of them.

Eventually, two chapters will be dedicated entirely to two specific packages, “dplyr” (for data manipulation) and “ggplot2” (for data visualization).

We did not go into many details with most of the topics. But this will change in the following chapters!

